49 research outputs found

    On Sequential Estimation of Linear Models From Data with Correlated Noise

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Lisbon, Portugal, 201

    Likelihood Consensus and Its Application to Distributed Particle Filtering

    Full text link
    We consider distributed state estimation in a wireless sensor network without a fusion center. Each sensor performs a global estimation task---based on the past and current measurements of all sensors---using only local processing and local communications with its neighbors. In this estimation task, the joint (all-sensors) likelihood function (JLF) plays a central role as it epitomizes the measurements of all sensors. We propose a distributed method for computing, at each sensor, an approximation of the JLF by means of consensus algorithms. This "likelihood consensus" method is applicable if the local likelihood functions of the various sensors (viewed as conditional probability density functions of the local measurements) belong to the exponential family of distributions. We then use the likelihood consensus method to implement a distributed particle filter and a distributed Gaussian particle filter. Each sensor runs a local particle filter, or a local Gaussian particle filter, that computes a global state estimate. The weight update in each local (Gaussian) particle filter employs the JLF, which is obtained through the likelihood consensus scheme. For the distributed Gaussian particle filter, the number of particles can be significantly reduced by means of an additional consensus scheme. Simulation results are presented to assess the performance of the proposed distributed particle filters for a multiple target tracking problem

    Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach

    Full text link
    Nowadays there is a growing research interest on the possibility of enriching small flying robots with autonomous sensing and online navigation capabilities. This will enable a large number of applications spanning from remote surveillance to logistics, smarter cities and emergency aid in hazardous environments. In this context, an emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings or concealing in large UAV networks. In contrast with current solutions mainly based on static and on-ground radars, this paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets. To this end, we describe a solution for real-time navigation of UAVs to track a dynamic target using heterogeneously sensed information. Such information is shared by the UAVs with their neighbors via multi-hops, allowing tracking the target by a local Bayesian estimator running at each agent. Since not all the paths are equal in terms of information gathering point-of-view, the UAVs plan their own trajectory by minimizing the posterior covariance matrix of the target state under UAV kinematic and anti-collision constraints. Our results show how a dynamic network of radars attains better localization results compared to a fixed configuration and how the on-board sensor technology impacts the accuracy in tracking a target with different radar cross sections, especially in non line-of-sight (NLOS) situations

    Collaborative Target-Localization and Information-Based Control in Networks of UAVs

    Get PDF
    In this paper, we study the capacity of UAV networks for high-accuracy localization of targets. We address the problem of designing a distributed control scheme for UAV navigation and formation based on an information-seeking criterion maximizing the target localization accuracy. Each UAV is assumed to be able to communicate and collaborate with other UAVs that are within a neighboring region, allowing for a feasible distributed solution which takes into account a trade-off between localization accuracy and speed of convergence to a suitable localization of the target. Such an investigation also considers communication latency constraints as well as safety requirements such as inter-UAV and obstacle collision avoidance

    Adapting the number of particles in sequential Monte Carlo methods through an online scheme for convergence assessment

    Get PDF
    Particle filters are broadly used to approximate posterior distributions of hidden states in state-space models by means of sets of weighted particles. While the convergence of the filter is guaranteed when the number of particles tends to infinity, the quality of the approximation is usually unknown but strongly dependent on the number of particles. In this paper, we propose a novel method for assessing the convergence of particle filters in an online manner, as well as a simple scheme for the online adaptation of the number of particles based on the convergence assessment. The method is based on a sequential comparison between the actual observations and their predictive probability distributions approximated by the filter. We provide a rigorous theoretical analysis of the proposed methodology and, as an example of its practical use, we present simulations of a simple algorithm for the dynamic and online adaptation of the number of particles during the operation of a particle filter on a stochastic version of the Lorenz 63 system.This work was supported in part by the Ministerio de EconomĂ­a y Competitividad of Spain under Grant TEC2013-41718-R OTOSiS, Grant TEC2012-38883-C02-01 COMPREHENSION, and Grant TEC2015-69868-C2-1-R ADVENTURE, in part by the Office of Naval Research Global under Grant N62909-15-1-2011, and in part by the National Science Foundation under Grant CCF-1320626 and Grant CCF-1618999

    Vehicle Tracking Based on Fusion of Magnetometer and Accelerometer Sensor Measurements With Particle Filtering

    Full text link
    corecore